Was ist ein Tsunami?

Tsunami (jap. Hafenwelle; aus tsu, Hafen, und nami, Welle) bezeichnet eine aussergewöhnlich hohe Wellenfront einer aufs Land schwappenden Wassermasse, die überwiegend durch Erdbeben unter dem Meeresboden ausgelöst wird. Auch ein Felssturz, das Kalben eines Eisbergs (Abbrechen grosser Stücke) oder ein Gletschersturz können Tsunamis auslösen.

tsunami

Tsunamis werden oft als Flutwellen bezeichnet, ihre Entstehung hat jedoch nichts mit den tageszeitlichen Wechseln zwischen Ebbe und Flut (Gezeiten) zu tun. Ebenso wenig werden Tsunamis durch Wind verursacht. Sie sind damit von sogenannten Riesen- oder Monsterwellen zu unterscheiden.

Auf offenem Meer werden Tsunamis kaum bemerkt, in Ufernähe jedoch können starke Tsunamis weiträumige katastrophale Schäden verursachen und ganze Küstenstriche verwüsten. Solche Erscheinungen zählen zu den Naturkatastrophen.

Der Begriff Tsunami (japanisch für: Hafenwelle) wurde durch japanische Fischer geprägt, die vom Fischfang zurückkehrten und im Hafen alles verwüstet vorfanden, obwohl sie auf offener See keine Welle gesehen oder gespürt hatten. Das liegt daran, dass Japan eine Tiefseesteilküste hat. Die in Richtung Land schwappenden Wassermassen bilden erst kurz vor dem Strand eine Riesenwelle und schlagen deshalb über die Hafenmauer in den Hafen, wo sie die Schiffe zertrümmern.
Eine Reihe verheerender Tsunamis zwischen 1945 und 1965 machte dieses Naturphänomen weltweit bekannt und bildete die Grundlage für wissenschaftliche Arbeiten, in deren Folge sich die japanische Bezeichnung als Internationalismus durchsetzte. Die bisher früheste bekannte wissenschaftliche Beschreibung dieses Naturereignisses mit exakter Ursachenanalyse stammt von dem österreichischen Geowissenschaftler Ferdinand von Hochstetter, der es 1868 in seinem Aufsatz Ueber das Erdbeben in Peru am 13. August 1868 und die dadurch veranlassten Fluthwellen im Pacifischen Ozean, namentlich an der Küste von Chili und von Neuseeland darstellte.

Entstehung und Fortpflanzung eines Tsunami

Etwa 86 % aller Tsunamis werden durch Hebungen und Senkungen nach Erdbeben verursacht, die restlichen entstehen durch die abrupte Verdrängung grosser Wassermassen, bedingt durch Vulkanausbrüche, küstennahe Bergstürze, Unterwasserlawinen oder Meteoriteneinschläge. Auch Nuklearexplosionen können Tsunamis auslösen. Tsunamis treten mit 79 % am häufigsten im Pazifik auf: Am Rand des Stillen Ozeans, in der Subduktionszone des Pazifischen Feuerrings, schieben sich tektonische Platten der Erdkruste (Lithosphäre) übereinander. Durch die sich ineinander verhakenden Platten entstehen Spannungen, die sich zu einem nicht vorhersehbaren Zeitpunkt schlagartig entladen, wodurch Erd- und Seebeben ausgelöst werden. Wird dabei eine der tektonischen Platten angehoben, wird auch der Meeresgrund und damit auch die darüber liegende Wassermasse schlagartig angehoben. Durch die Gravitation wird das hochgehobene Wasser wieder in alle Richtungen verteilt, was seine Zeit braucht. So breitet sich die angehobene Wassermasse mit einer Wellenfront in alle Richtungen aus. Meist ist die unterseeische Landhebung nicht flächen-, sondern linienförmig (Bruchkante), dann bewegt sich die Wellenfront v.a. in zwei Richtungen (vom Bruch weg).
Ein Erdbeben kann nur dann einen Tsunami verursachen, wenn alle drei folgenden Bedingungen gegeben sind:
es eine Magnitude von 7 oder mehr erreicht,
sein Hypozentrum nahe der Erdoberfläche am Meeresgrund liegt und
es eine vertikale Verschiebung des Meeresbodens verursacht, welche die darüber liegende Wassersäule in Bewegung versetzt.
Nur ein Prozent der Erdbeben zwischen 1860 und 1948 verursachten messbare Tsunamis.
Möglich ist auch, dass nicht die unmittelbar durch das Erdbeben bedingte Bewegung des Meeresbodens, sondern ein durch das Erdbeben ausgelöster unterseeischer Hangrutsch den Tsunami verursacht. In einem solchen Fall können schon relativ kleine Erdbeben (ab Magnitude 7) einen Tsunami nach sich ziehen.

Ausbreitung

Tsunamis unterscheiden sich grundlegend von Wellen, die durch Stürme entstehen, denn bei diesen kann das Wasser zwar unter ausserordentlichen Bedingungen bis zu 30 Meter hoch aufgeworfen werden, die tieferen Wasserschichten bleiben dabei jedoch unbewegt. Bei einem Tsunami bewegt sich dagegen das gesamte Wasservolumen, also die gesamte Wassersäule vom Meeresboden bis zur Meeresoberfläche, als sogenannte Grundwelle.

Tsunamis sind Schwerewellen

Bei der Fortpflanzung eines Tsunamis bewegt sich die gesamte Wassersäule (Grössenordnung übertrieben). Allerdings nimmt die Bewegungsamplitude, anders als hier dargestellt, mit zunehmender Tiefe ab und erreicht am Boden 0.
Grundsätzlich repräsentiert eine Welle keine Bewegung von Wasser, sondern Bewegung von Energie durch Wasser. Aus physikalischer Sicht ist Wellenausbreitung immer dann möglich, wenn eine Auslenkung aus einer Gleichgewichtslage, in diesem Fall ein Anstieg oder Abfall des Wasserspiegels, eine entgegengerichtete Rückstellkraft zur Folge hat. Bei Ozeanwellen wirkt als Rückstellkraft die Schwerkraft, die auf eine möglichst horizontale Wasseroberfläche hinarbeitet. Aus diesem Grund werden Tsunamis zu den Schwerewellen gezählt. Ein Tsunami ist also insbesondere keine Druck- und keine Schallwelle; Kompressibilität, Viskosität und Turbulenz sind nicht relevant. Um die Physik eines Tsunamis zu verstehen, genügt es, die Potentialströmung einer idealen, also reibungsfreien, inkompressiblen und wirbelfreien Flüssigkeit zu betrachten. Mathematisch werden Tsunamis durch die Soliton-Lösungen der Korteweg-de-Vries-Gleichung beschrieben.
Die Theorie der Schwerewellen vereinfacht sich in den beiden Grenzfällen der Tief- und der Flachwasserwelle. Normale Wellen, die beispielsweise durch Wind, fahrende Schiffe oder ins Wasser geworfene Steine verursacht werden, sind meist Tiefwasserwellen, da sich ihre Wellenbasis in der Regel über dem Grund des Gewässers befindet, also dort, wo die Welle keine Auswirkungen mehr hat. Ein Tsunami hingegen ist auch im tiefsten Ozean eine Flachwasserwelle, da die gesamte Wassersäule bewegt wird und sich auch am Ozeanboden eine langsamere Bewegung in Richtung der Wellenausbreitung feststellen lässt. Dem entspricht, dass bei Tsunamis die Wellenlänge (Entfernung von einem Wellenberg zum nächsten) viel grösser ist als die Wassertiefe. Dabei wird eine wesentlich grössere Wassermenge bewegt.
Ein Tsunami wird vereinfacht durch zwei Grundparameter beschrieben:
seine mechanische Energie E;
seine Wellenperiode T: die Zeit, die vergeht, in der zwei Wellenberge denselben Punkt passieren.
Während der Ausbreitung eines Tsunami bleiben diese beiden Parameter weitgehend konstant, da wegen der grossen Wellenlänge die Energieverluste durch Reibung vernachlässigbar sind.
Tsunamis seismischer Natur weisen lange Wellenperioden auf, die sich zwischen zehn Minuten und zwei Stunden bewegen. Durch andere Ereignisse als Erdbeben erzeugte Tsunamis haben oft kürzere Wellenperioden im Bereich von einigen Minuten bis zu einer Viertelstunde. Andere Eigenschaften wie die Wellenhöhe und -länge oder die Ausbreitungsgeschwindigkeit hängen neben den beiden Grundparametern nur von der Meerestiefe ab.

Geschwindigkeit

Die Geschwindigkeit eines Tsunamis hängt von der Meerestiefe ab; je tiefer das Meer, desto schneller, und je flacher, desto langsamer ist der Tsunami. Die Geschwindigkeit c einer Tsunamiwelle (genauer: die Phasengeschwindigkeit) ergibt sich aus der Wurzel des Produktes von Erdbeschleunigung g (9,81 m/s²) und Wassertiefe h; also
.
Die Ausbreitungsgeschwindigkeit beträgt somit in Ozeanen (Wassertiefe ca. 5000 m) ca. 800 km/h. Das ist vergleichbar mit der Reisegeschwindigkeit eines Flugzeuges. Tsunamis können also binnen einiger Stunden ganze Ozeane durchqueren und sich bis zu 20.000 km ausbreiten, ohne dabei unmittelbar bemerkt zu werden. Bei vom Wind erzeugten Wellen dagegen liegen die Geschwindigkeiten zwischen 8 und 100 km/h. Bei niedriger Wassertiefe, also in Küstennähe, verlangsamt sich der Tsunami, wie auf nebenstehender Animation zu sehen ist. Damit verringert sich auch die Wellenlänge, wodurch es zu einem Anstieg der Wellenhöhe und schliesslich zum Brechen der Welle kommt.
Schwerewellen kommen durch die gleichtaktige Bewegung grosser Wassermassen zustande. Jedes einzelne Teilvolumen des Wassers bewegt sich dabei nur um winzige Beträge. Für eine Flachwasser-Schwerewelle mit der Amplitude a in einem Gewässer der Tiefe h kann man das sogar quantitativ angeben: Die Geschwindigkeit, mit der sich die an der Welle beteiligte Materie zirkulär bewegt, ist um einen Faktor a/h kleiner als die Phasengeschwindigkeit der Welle. Für einen grossen Tsunami liegt dieser Faktor in der Grössenordnung 10-5: Wenn sich eine Welle im offenen Meer mit c = 200 m/s (720 km/h) ausbreitet, bewegen sich die Wasserelemente nur mit 2 mm/s, was gegenüber Strömungen und Windwellen völlig vernachlässigbar und nicht direkt beobachtbar ist. Zugleich erklärt es den nur geringen Energieverlust der Schwerewelle bei ihrer Wanderung.

Wellenlänge

Tsunamis sind, da ihre Wellenlänge ? viel grösser als die Meerestiefe h ist, so genannte Flachwasserwellen oder Oberflächenwellen. Typische Wellenlängen bei Tsunamis liegen zwischen 100 und 500 km. Die Wellenlängen von winderzeugten Wellen erreichen dagegen nur zwischen 100 und 200 Meter. Allgemein gilt für Wellen die Beziehung zwischen Geschwindigkeit c, Wellenlänge ? und Wellenperiode T,
Mit der Tsunamigeschwindigkeit von oben und der Angabe der Wellenlänge können typische Wellenperioden über: …. errechnet werden zu: ….

Die Zeit T ist die Zeit, die bis zum Eintreffen der zweiten Welle vergeht.
Je grösser die Wellenlänge, desto geringer sind die Energieverluste während der Wellenausbreitung. Bei kreisförmiger Ausbreitung ist die Energie, mit der eine Welle auf einen Küstenstreifen auftrifft, in erster Näherung umgekehrt proportional zum Abstand vom Entstehungsort des Tsunami.
Amplitude
Die Wellenhöhe (Amplitude) A des Tsunami hängt von der Energie E und der Wassertiefe h ab. Bei Tsunamis mit grosser Wellenlänge gilt:

Dies bedeutet, dass die Amplitude A bei geringerer Wassertiefe h zunimmt. Im offenen Meer nimmt sie, da der Tsunami eine Oberflächenwelle ist, mit zunehmender Entfernung r nur um den Faktor ab (Kugelwellen, die sich in die Tiefe ausbreiten, nehmen um den Faktor 1 / r ab). Dies kann man sich veranschaulichen, wenn man einen Stein in eine flache Pfütze wirft. Die Amplitude der Wasserwellen nimmt nur merklich ab, da sich die Energie kreisförmig über einen grösseren Wellenkamm verteilt. Der Energieverlust durch die innere Reibung der Wassermoleküle ist verschwindend gering und der Impuls wird nahezu ungeschwächt an die benachbarten Wassermoleküle weitergegeben. Die Energie einer Tsunamiwelle schwächt sich im offenen Meer nur durch ihre geometrische Ausbreitung ab. Tsunamiwellen können daher die Erdkugel mehrfach umrunden. Bei Tsunamis kleinerer Wellenlänge – meist nicht von Erdbeben verursacht – kann die Amplitude mit der Entfernung wesentlich schneller abnehmen.
Auf dem offenen Ozean beträgt die Amplitude selten mehr als einige Dezimeter. Der Wasserspiegel wird somit nur langsam und nur um einen geringen Betrag angehoben und wieder abgesenkt, weshalb das Auftreten eines Tsunami auf offener See meist gar nicht bemerkt wird.
Die Zerstörungskraft eines Tsunami wird nicht grundsätzlich durch seine Amplitude, sondern durch die Wellenperiode sowie durch die transportierte Wassermenge bestimmt.

Auftreffen auf die Küste – Erhöhung der Amplitude

Beim Auftreffen auf die Küste erhöht sich die Amplitude; die Wellenlänge und Geschwindigkeit des Tsunamis nehmen ab (s. Tabelle)
In Küstennähe wird das Wasser flach. Das hat zur Folge, dass Wellenlänge und Phasengeschwindigkeit abnehmen (s. Tabelle), die Amplitude der Welle und die Geschwindigkeit der beteiligten Materie aber zunehmen. Die Energie der Tsunamiwelle wird dadurch immer stärker konzentriert, bis sie mit voller Wucht auf die Küste auftrifft. Der Energiegehalt eines Wellenzuges ergibt sich als Querschnitt mal Wellenlänge mal Teilchengeschwindigkeit-zum-Quadrat und ist in erster Näherung unabhängig von h.
Typische Amplituden beim Auftreffen eines Tsunamis auf die Küste liegen in einer Grössenordnung von 10 Metern; am 24. April 1971 wurde in der Nähe der japanischen Insel Ishigaki von einer Rekordhöhe von 85 Metern in flachem Gelände berichtet. In Ufernähe einer Tiefseesteilküste kann die Amplitude auf etwa 50 Meter ansteigen. Läuft ein Tsunami in einen Fjord, so kann sich die Welle auf weit über 100 Meter aufstauen.
Im Fjord „Lituya Bay“ in Alaska wurden mehrere Wellen mit rund 150 Metern und sogar eine mit bis zu 530 Metern Höhe nachgewiesen (Megatsunami). Diese gigantischen Wellen entstanden jedoch nicht als Fernwirkung eines Erdbebens, sondern durch Wasserverdrängung im Fjord selbst: Heftige Erdbeben liessen Berghänge in den Fjord rutschen und brachten diesen schlagartig zum Überlaufen.
Tiefe (m) Geschwindigkeit (km/h) Wellenlänge (km)
10 36 10,6
50 79 23
200 159 49
2000 504 151
4000 713 213
7000 943 282
Geschwindigkeit und Wellenlänge eines Tsunamis in Abhängigkeit von der Wassertiefe
Brechungseffekte

Die Änderung der Wellenausbreitungsgeschwindigkeit bei Annäherung des Tsunami an die Küste hängt vom Tiefenprofil des Meeresbodens ab. Je nach örtlichen Gegebenheiten kann es zu Brechungseffekten kommen: So wie Licht beim Übergang von Luft in Wasser oder Glas seine Richtung ändert, so ändert auch eine Tsunamiwelle ihre Richtung, wenn sie schräg durch eine Zone läuft, in der sich die Meerestiefe ändert. Je nach Ursprungsort des Tsunami und Unterwassertopographie kann es dabei zur Fokussierung des Tsunami auf einzelne Küstenbereiche kommen. Dieser Effekt ist von der Trichterwirkung eines Fjords nicht scharf zu trennen und kann sich mit dieser überlagern.

Zurückweichen des Meeres

Wie ein akustisches Signal, so besteht auch ein Tsunami nicht aus einer einzelnen Welle, sondern aus einem ganzen Paket von Wellen mit unterschiedlichen Frequenzen und Amplituden. Wellen unterschiedlicher Frequenz breiten sich mit leicht unterschiedlicher Geschwindigkeit aus. Deshalb addieren sich die einzelnen Wellen eines Paketes in von Ort zu Ort und von Minute zu Minute unterschiedlicher Weise. Je nach Ursache kann ein Tsunami an einem Punkt der Küste zuerst als Wellenberg oder zuerst als Wellental beobachtet werden. Ist die Ursache des Tsunami ein Hangabrutsch oder Herunterbrechen einer Kontinentalplatte, so wird Wasser zur Sohle hin beschleunigt. Wasser wird verdrängt, und es entsteht zunächst ein Wellental. Danach bewegt sich das Wasser wieder zurück, und der Wellenberg entsteht. Beim Eintreffen der Welle an der Küste zieht sich zunächst die Küstenlinie zurück, unter Umständen um mehrere 100 Meter. Wenn der Tsunami eine unvorbereitete Bevölkerung trifft, kann es geschehen, dass die Menschen durch das ungewöhnliche Schauspiel des zurückweichenden Meeres angelockt werden, statt dass sie die verbleibenden Minuten bis zur Ankunft der Flutwelle nutzen, um sich auf höher gelegenes Gelände zu retten.

Gefahren und Schutz

Tsunamis zählen zu den verheerendsten Naturkatastrophen, mit denen der Mensch konfrontiert werden kann, denn ein mächtiger Tsunami kann seine zerstörerische Energie über Tausende von Kilometern weit mitführen oder sogar um den ganzen Erdball tragen. Ohne schützende Küstenfelsen können schon drei Meter hohe Wellen mehrere hundert Meter tief ins Land eindringen. Die Schäden, die ein Tsunami beim Vordringen verursacht, werden noch vergrössert, wenn die Wassermassen wieder abfliessen. Die Gipfelhöhe eines Tsunami hat nur bedingte Aussagekraft über seine Zerstörungskraft. Gerade bei niedrigen Landhöhen kann auch eine niedrige Wellenhöhe von nur wenigen Metern ähnliche Zerstörungen wie ein grosser Tsunami mit über 31 Metern anrichten.
Am 26. Dezember 2004 wurden durch den grossen Tsunami in Südostasien mindestens 231.000 Menschen getötet. Ausgelöst wurde die Welle durch eines der stärksten Erdbeben seit Beginn der Aufzeichnungen. Die verheerende Wirkung beruhte hier vor allem auf dem grossen Wasservolumen, das pro Kilometer Küstenlinie auf das Land traf, während die Wellenhöhe mit zumeist nur wenigen Metern vergleichsweise niedrig war.

Gefahrenzonen

Die häufigsten Tsunamis entstehen am westlichen und nördlichen Rand der pazifischen Platte, im Pazifischen Feuerring.
Japan musste aufgrund seiner geografischen Lage in den letzten tausend Jahren die meisten Todesopfer durch Tsunamis beklagen; in dieser Zeit starben über 160.000 Menschen. In den letzten 100 Jahren richteten jedoch nur 15 Prozent der 150 registrierten Tsunamis Schäden an oder kosteten Menschenleben. Heutzutage verfügt Japan über ein effektives Frühwarnsystem, und für die Bevölkerung finden regelmässig Trainingsprogramme statt. Viele japanische Küstenstädte schützen sich durch das Errichten riesiger Deiche, z. B. ein 10 Meter hoher und 25 Meter breiter Wall auf der Insel Okushiri.
In Indonesien dagegen wirkt heute noch die Hälfte der Tsunamis katastrophal, denn die meisten Küstenbewohner sind über die Anzeichen, die einen Tsunami ankündigen, nicht informiert. Meistens ist auch das Land sehr flach und die Wassermassen fliessen bis ins Landesinnere (siehe auch Erdbeben im Indischen Ozean 2004 und Seebeben vor Java Juli 2006). Indonesien liegt in einem sogenannten „Ring of Fire“, was bedeutet, dass es von Vulkanen (potentielle Auslöser) umgeben ist.
Auch an den europäischen Küsten treten Tsunamis auf, wenn auch wesentlich seltener. Da die Afrikanische Platte sich nach Norden unter die Eurasische Platte schiebt, können durch Erdbeben im Mittelmeer und im Atlantik ebenfalls Tsunamis entstehen.
Auch ein Meteoriteneinschlag kann einen Tsunami auslösen. Die Wahrscheinlichkeit, dass der Himmelskörper auf dem Meer aufprallt, ist grösser, als dass er auf Boden trifft, da Meere den grössten Teil der Erdoberfläche ausmachen. Um einen Tsunami auszulösen, sind jedoch sehr grosse Meteoriten nötig. Siehe auch Meteoriteneinschlag.

Auswirkungen

Ertrinken: Menschen können durch die starken Strömungen der auflaufenden Flutwelle ins Landesinnere gegen Gegenstände oder Gebäude bzw. anschliessend mit dem Rückfluss der Flutwellen ins offene Meer gespült werden. Andere können ertrinken, weil sie nicht schwimmen können, oder durch Erschöpfung.
Unterkühlung: Bei niedriger Wassertemperatur kühlt der Körper im Wasser sehr schnell aus. Hierdurch können Menschen durch Erfrieren umkommen oder erkranken.
Schnittwunden, Prellungen, Quetschungen, innere Blutungen: Menschen können mitgerissen und von Gegenständen, die im Wasser mittreiben, oder solchen, die fix bleiben (z. B. Felsen, Steinmauern), verletzt oder erschlagen werden.
Menschen können in Gebäuden verschüttet werden, die unter dem Druck des Wassers zusammenbrechen.
Nicht zu unterschätzende Spätfolge kann eine Blutvergiftung wegen möglicherweise folgender katastrophaler hygienischer Zustände sein.
Es kann zum Schock und durch das erlittene Trauma zu einer schwerwiegenden Belastungsstörung kommen, die unter Umständen monate- oder jahrelang andauert und/oder sich erst Monate nach dem Tsunami zeigt.
Ausser den unmittelbaren Folgen für die betroffenen Menschen gibt es bei grossen Tsunamis auch erhebliche Spätfolgen. Neben den bereits erwähnten Belastungsstörungen können das sein:
Hunger, Durst: Eine zerstörte Infrastruktur kann die Grundversorgung mit sauberem Wasser und Nahrungsmitteln beeinträchtigen.
Armut: Die breite Zerstörung kann viele Menschen ihrer Lebensgrundlagen und Erwerbsmittel berauben.
Eine Versalzung der Böden in den überschwemmten Gebieten kann die Landwirtschaft temporär oder lang anhaltend beeinträchtigen.

Frühwarnsysteme

Tsunami-Frühwarnsysteme machen sich zu Nutze, dass bestimmte Informationen über das mögliche Auftreten eines Tsunamis gewonnen werden können, bevor der Tsunami selbst seine zerstörerische Kraft entfalten kann. Seismische Wellen breiten sich viel schneller aus als die Tsunamiwelle selbst. Ist z.B. ein ausreichend dichtes Netz seismischer Stationen verfügbar, lassen sich daher bereits nach wenigen Minuten genaue Rückschlüsse über den Ort und die Stärke eines Erdbebens ziehen, und damit eine möglicherweise davon ausgehende Tsunamigefahr prognostizieren. GPS-Stationen messen zentimetergenau die Verschiebung der Erdoberfläche, welche sich auf den Meeresboden extrapolieren lässt und eine präzise Prognose der Tsunamigefahr ermöglicht. Bojen messen die Tsunamiwelle direkt noch auf hoher See, so dass eine Vorwarnzeit bleibt.
Viele Staaten haben in den letzten Jahrzehnten technische Frühwarnsysteme eingerichtet, die durch das Aufzeichnen seismographischer Plattenbewegungen Tsunamis schon bei der Entstehung erkennen können, so dass durch den gewonnenen Zeitvorsprung die gefährdeten Küstengebiete evakuiert werden können. Dies gilt vor allem für den Pazifischen Ozean. Dort wurde zwischen 1950 und 1965 ein Netz von Sensoren am Meeresboden und an sonstigen wichtigen Stellen eingerichtet, das kontinuierlich alle relevanten Daten misst und über Satellit an das Pacific Tsunami Warning Center (PTWC) in Honolulu auf Hawaii meldet. Dieses wertet die Daten laufend aus und kann innerhalb von 20 bis 30 Minuten eine Tsunami-Warnung verbreiten. Da die betroffenen Staaten über ein effektives Kommunikationssystem und regionale Notstandspläne verfügen, besteht im Katastrophenfall eine gute Chance, dass rechtzeitig Rettungsmassnahmen eingeleitet werden können.
Einige Küstenstädte in Japan schützen sich durch bis zu 10 Meter hohe und 25 Meter breite Deiche, deren Tore innerhalb von wenigen Minuten geschlossen werden können. Ausserdem beobachten Leute vom Küstenschutz mit Kameras den Meeresspiegel auf Veränderungen. Ein Frühwarnsystem gibt bei Erdbeben der Stärke 4 automatisch Tsunamialarm, so dass die Einwohner evakuiert werden können.
Leider besitzen einige von der Gefahr betroffene Staaten diese Systeme noch nicht, und deren Informationsnetz ist so schlecht ausgebaut, dass eine Vorwarnung nur eingeschränkt oder überhaupt nicht möglich ist. Dies betrifft insbesondere den Indischen Ozean. Zudem kommt es vor, dass Behörden aus Angst des Verlustes der Einnahmequelle Tourismus Tsunami-Warnungen nicht weiterleiten.
Die Staaten am Indischen Ozean haben nach der Flutkatastrophe in Südasien 2004 beschlossen, ein Tsunami-Frühwarnsystem einzurichten. Indonesien hat ein deutsches Frühwarnsystem geordert – das German Indonesian Tsunami Early Warning System (GITEWS) – das im Auftrag der deutschen Bundesregierung vom Geoforschungszentrum (GFZ) Potsdam und sieben weiteren Institutionen entwickelt wurde und seit November 2008 im Testbetrieb ist. Durch seismische Sensoren, Ozean-Bojen und GPS-Technologie soll dieses komplexe System noch exaktere Vorhersagen als das PTWC erlauben.
Die Koordination der vorhandenen Systeme zu einem weltweiten System wird seit Mitte 2005 vorangetrieben. Für die Erkennung von den Erdbeben werden die seismologischen Auswertungen der UNO herangezogen, die normalerweise für die Überwachung des vollständigen Atomteststoppvertrages CTBT verwendet werden. Dazu müssen nur die Meldesysteme in die nationalen Alarmsysteme integriert werden, da die Erkennungsmöglichkeiten schon vorhanden sind. Die Meldungen dieser künstlichen durch Nuklearexplosionen hervorgerufenen oder natürlichen Erdbeben laufen in Wien bei der Atomteststoppvertragsorganisation CTBTO zusammen.
Das erste sichtbare Anzeichen einer kommenden Riesenwelle ist der Rückzug des Meeres von der Küste.
Bei allen Frühwarnsystemen besteht das Problem, dass Falschalarme bei einer unnötigen Evakuierung hohe Kosten verursachen können und das Vertrauen der Menschen in die Prognosen untergraben.

Persönliche Schutzmassnahmen

Wenn man sich an einem Küstenstreifen aufhält, sollten unbedingt folgende Sicherheitsmassnahmen beachtet werden:
Bei Tsunami-Warnungen oder bei ersten sichtbaren Anzeichen wie z.B. dem Zurückweichen der Uferlinie sofort aus dem gefährdeten Küstenbereich zu höheren Standorten (mindestens 30 Meter Höhe) oder ins Landesinnere flüchten
Nicht in Ufernähe schlafen oder leben (Mindestabstand 300 Meter)
Dort, wo vorhanden, Alarmsirenen beachten (da Tsunamis selten sind und gelegentlich Falschalarm ausgelöst wird, kommt es vor, dass viele Menschen die Alarmsirenen ignorieren)
Mit mehreren Wellen rechnen und nicht nach der ersten oder zweiten Welle zurückkehren (zwischen den Wellen weicht das Meer sehr weit zurück, was ein Alarmzeichen darstellt)
Sich auf einem Dach oder einem starken Baum in Sicherheit bringen

Binnentsunamis

Ausser in den Meeren kommen Tsunamis auch an Binnengewässern vor: Diese entstehen typischerweise im Bergland durch grosse Bergstürze, haben dieselbe Charakteristik wie die Meerestsunamis (langwelliges Zurückweichen und mehrere Flutberge), bleiben im Ausmass naturgemäss aber meist weit darunter (Fluthöhen bis 3–4 Meter).
Historische Binnentsunamis sind etwa am Vierwaldstättersee 1601 (nach Erdbeben) oder am Lovatn in Island (1905, 1936) dokumentiert (siehe jew. bei den grössten Tsunamis), entstanden wohl auch im 11. Jahrhundert am Königssee, auch beim Ende der Mondseekultur des 3. Jahrtausends v.Chr. wird so eine Katastrophe vermutet (Bergsturz im 100-Mio.-m³-Bereich).

Die grössten Tsunamis

Antike und prähistorisches Zeitalter

zwischen 25.000 und 5.000 v.Chr.: Storegga-Ereignis; der Abbruch einer Fläche von der Grösse Islands (in drei Schüben) vom Kontinentalabhang vor Norwegen muss einen Tsunami gewaltigen Ausmasses verursacht haben.
In prähistorischer Zeit kamen gewaltige Tsunamis mit Höhen von 300 bis 400 m vor. Sie entstanden durch gewaltige Hangrutsche oder Einstürze ganzer Berge, die aufgrund von vulkanischen Tätigkeiten ins Meer brachen, zum Beispiel auf den Inseln Hawaiis vor 110.000 Jahren, oder durch Unterwasserlawinen, wie vor 8.000 Jahren vor der norwegischen Küste. Solche Tsunamis können durch Ablagerungen von so genannten Tsunamiten und Felsproben rekonstruiert werden.
ca. 6.300 v. Chr. verursachte ein Bergsturz am Ätna einen Tsunami im östlichen Mittelmeer;
Spätes 16. Jh. v. Chr. (nach sehr umstrittenen neueren Theorien 1628 v. Chr.): Eine Vulkanexplosion auf Santorin soll nach Meinung einiger Forscher zu bis zu 60 Meter hohen Wellen im gesamten östlichen Mittelmeer geführt haben. Bis vor einigen Jahrzehnten nahmen einige Forscher an, dass die Flutwellen zur Auslöschung der minoischen Kultur geführt hat. Die minoische Kultur bestand jedoch noch mindestens ein halbes Jahrhundert weiter.
479 v. Chr.: Der älteste genau datierbare Tsunami wird vom griechischen Historiker Herodot überliefert. Die persischen Belagerer von Potidaia wurden von einer riesigen Welle überrascht, als sie sich das unerwartet zurückziehende Meer zunutze machen wollten, um die Stadt anzugreifen. Herodot schreibt das Auftreten der rettenden Flutwelle dem Meeresgott Poseidon zu.
426 v. Chr.: Der Historiker Thukydides beschreibt in seinem Werk Der Peloponnesische Krieg anhand des Erdbebens im Golf von Euböa erstmals den ursächlichen Zusammenhang des Auftretens von Erdbeben und nachfolgenden Flutwellen.
373 v. Chr.: Erdbeben und Flutwelle zerstörten das 2 km von der Küste gelegene Helike restlos. Die Katastrophe wurde von mehreren antiken Geographen beschrieben und könnte einer Theorie zufolge den Zeitzeugen Plato zum Mythos von Atlantis angeregt haben.
365 n. Chr.: Der römische Historiker Ammianus Marcellinus (Res Gestae 26.10.15-19) berichtet von einem gewaltigen Tsunami, der am 21. Juli 365 die östlichen Küsten des Mittelmeeres heimsuchte und den Tod Zehntausender von Menschen zur Folge hatte. Ammianus schilderte dabei genau die charakteristische Abfolge von Erdbeben, Rückzug des Meers und heranrollender Riesenwelle.

17. Jahrhundert

18. September 1601: Ein Erdbeben mit Zentrum in Unterwalden in der Zentralschweiz forderte angeblich acht Tote. Erschütterungen waren in der ganzen damaligen Schweiz zu spüren. Die durch das Erdbeben ausgelösten Erdrutsche führten zu einer vermutlich bis zu 4 Meter hohen Flutwelle im Vierwaldstättersee, die in der Stadt Luzern beträchtliche Schäden anrichtete. Das Ereignis wurde vom damaligen Stadtschreiber Renward Cysat ausführlich beschrieben. Es handelt sich um einen der ersten durch einen Augenzeugen gut dokumentierten Tsunami.
20. Januar 1607 (nach Julianischem Kalender): Überschwemmungen am Bristolkanal forderten rund 2.000 Todesopfer. Als Ursache wird in der jüngeren Forschung ein Seebeben vermutet.

18. Jahrhundert

28. Oktober 1746: Ein Erdbeben mit anschliessendem Tsunami zerstörte die peruanische Hafenstadt Callao. Von den rund 5000 Bewohnern überlebten nur etwa 200.
1. November 1755: Die portugiesische Hauptstadt Lissabon wurde von einem Brand zerstört, der infolge eines Erdbebens ausbrach (Erdbeben von Lissabon). Als die Einwohner vor den Flammen an das Ufer des Tejo flüchteten, wurden sie von haushohen Flutwellen überrascht. Zwei Drittel der Stadt wurden zerstört, 60.000 Menschen starben. Der Tsunami machte sich noch in Irland und jenseits des Atlantiks auf den kleinen Antillen bemerkbar, Madeira wurde von 15 Meter hohen Wellen erreicht. Das Erdbeben war auch in Venedig deutlich zu spüren und wird sogar in Casanovas Memoiren erwähnt.

19. Jahrhundert

13. bis 15. August 1868: Nach einem Seebeben vor der südamerikanischen Küste richtete ein Tsunami in Chile und an den Ostküsten von Neuseeland sowie Australien erheblichen Schaden an. Tausende Menschen starben dadurch. Das Ereignis führte zur frühen geowissenschaftlichen Erklärung durch Ferdinand von Hochstetter.
27. August 1883: Nach der Explosion des Vulkans Krakatau entstand ein grosser Tsunami, der im nahen Umkreis 40 m hohe Flutwellen auslöste, durch die ungefähr 36.000 Menschen starben.
13. März 1888: Bei Hatzfeldhafen (Deutsch-Neuguinea) wurde die 8 m hohe Flutwelle eines Tsunamis beobachtet, der durch den Ausbruch des Vulkans auf der Ritter-Insel ausgelöst worden war.
15. Juni 1896: Der so genannte Sanriku-Tsunami, eine Wasserwand von 23 m Höhe, überraschte Japan während religiöser Feierlichkeiten, 26.000 Menschen ertranken.

20. Jahrhundert

15. Januar 1905: Bei einer durch einen Felsabsturz des Ramnefjell in den Lovatn-See (Norwegen) verursachten 40 m hohen Flutwelle starben am 10 km entfernt gegenüberliegenden Ufer 63 Einwohner der Dörfer Bodal und Nesdal.
31. Januar 1906: Die Küsten Kolumbiens und Ecuadors wurden von einer verheerenden Flutwelle überschwemmt, 500 bis 1500 Menschen kamen ums Leben.
28. Dezember 1908: Die Stadt Messina in Italien wurde fast vollständig durch ein Erdbeben und einen darauffolgenden Tsunami zerstört. Mehr als 75.000 Menschen fanden den Tod (siehe Erdbeben von Messina 1908).
18. November 1929, der Neufundlandbank-Tsunami forderte 28 Tote und mehr als 10.000 Obdachlose
1936: Bei einem erneuten Felsabsturz des Ramnefjell in den Lovatn-See (Norwegen) entstand eine 70 m hohe Flutwelle und zerstörte wiederum zwei Dörfer. Ein Ausflugsschiff wurde 350 m weit ins Land getragen. Die Dörfer wurden daraufhin aufgegeben, so dass bei einem weiteren Erdrutsch mit Flutwelle im Jahre 1950 keine Opfer zu beklagen waren.
1. April 1946: Vor Alaska riss eine Welle infolge eines Erdbebens die fünfköpfige Besatzung eines Leuchtturmes in den Tod. Stunden später erreichte die Welle das fast 3.700 km entfernte Hawaii, wo 159 Menschen starben.
5. November 1952: 2336 Einwohner von Sewero-Kurilsk kamen durch einen von einem Seebeben 130 km vor der Küste Kamtschatkas hervorgerufenen Tsunami ums Leben. Zerstörungen gab es auch in anderen Ortschaften Kamtschatkas und der Kurilen.
9. Juli 1958: In der Lituya Bay (Alaska) entstand durch einen Erdrutsch ein Tsunami, der auf dem gegenüberliegenden Uferhang der engen fjordähnlichen Bucht eine Höhe von bis zu 520 m erreichte.
22. Mai 1960: Das Erdbeben von Valdivia erzeugte eine elf Meter hohe Welle im Pazifik, die in Chile 1.000 Menschen tötete. Auf Hawaii kamen 61 Menschen ums Leben, doch konnte durch ein erstes Warnsystem der Ort Hilo rechtzeitig evakuiert werden.
27. März 1964: Am Karfreitag löste das Karfreitagsbeben vor Alaska an der gesamten Westküste der USA eine Flutwelle aus und forderte zahlreiche Opfer
16. August 1976: Ein Tsunami im Golf von Moro forderte auf den Philippinen mehr als 5.000 Menschenleben.
2. September 1992: Beim Nicaragua-Erdbeben 1992 mit Epizentrum 120 km vor der Küste wurden mindestens 116 Personen getötet, viele davon wurden an der Pazifikküste von Nicaragua von einer zehn Meter hohen Flutwelle überrascht.
17. Juli 1998: An der Nordküste von Papua-Neuguinea wurden 2.000 Menschen von einer Flutwelle getötet, die von einem Beben ausgelöst wurde.

21. Jahrhundert

21. Mai 2003: Ein Erdbeben vor Algerien tötete mehr als 2.000 Menschen und löste einen kleinen Tsunami aus, der auf Mallorca und Ibiza zu lokalen Überschwemmungen führte.
26. Dezember 2004: Durch ein Erdbeben im Indischen Ozean (3° 33′ Nord, 95° 8′ Ost) vor der Insel Sumatra, das eine Magnitude um 9,3 hatte – das drittstärkste je gemessene Beben –, ereignete sich eine der bisher schlimmsten Tsunamikatastrophen der Geschichte. Mindestens 231.000 Menschen in acht asiatischen Ländern wurden getötet. Die Wellenenergie breitete sich mehrere tausend Kilometer bis nach Ost- und Südostafrika aus und forderte als Flutwelle dort weitere Opfer.
17. Juli 2006: Ein Seebeben vor der indonesischen Insel Java löste einen Tsunami aus, durch den über 700 Menschen ums Leben kamen.
2. April 2007: Ein Seebeben bei den Salomonen der Stärke 8,0 löste im Südpazifik einen Tsunami aus, der die Salomonen-Inseln verwüstete, die Flutwelle war bis zu 12 Meter hoch. Das Epizentrum lag nur 40 Kilometer südöstlich von Gizo, es wurden mindestens 12 bis 20 Menschen getötet.
30. September 2009: Ein Erdbeben vor der Küste der Samoainseln mit der Stärke 8,0 löste einen Tsunami aus, der Teile der Insel verwüstete. Nach ersten Berichten kamen dabei mindestens 80 bis 100 Menschen ums Leben.
25. Oktober 2010: Ein Erdbeben der Stärke 7,2 bis 7,5 löste auf den Mentawai-Inseln vor Sumatra einen Tsunami mit gut drei Meter hoher Flutwelle aus, die bis zu 600 Meter landeinwärts drang. Mindestens 272 Tote und weitere Vermisste.
11. März 2011: In Folge eines Erdbebens der Stärke 9,0 vor der Küste von Sendai trifft ein Tsunami die japanische Küste. Die Flutwellen breiten sich über den gesamten Pazifikraum aus, treffen die Küsten anderer Länder aber weniger stark als zunächst befürchtet. Noch Stunden später sind diverse Nachbeben und neue starke Erdbeben zu spüren. Erste Schätzungen sprechen von mindestens 1000 Opfern.

Zurück zu den Naturgefahren

Zurück zu den NMG-Themen